Serveur d'exploration Nissiros

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Modelling of melt segregation processes by high-temperature centrifuging of partially molten granites—II. Rayleigh-Taylor instability and sedimentation

Identifieur interne : 000296 ( Main/Exploration ); précédent : 000295; suivant : 000297

Modelling of melt segregation processes by high-temperature centrifuging of partially molten granites—II. Rayleigh-Taylor instability and sedimentation

Auteurs : N. S. Bagdassarov [Allemagne] ; A. M. Dorfman [Allemagne] ; D. B. Dingwell [Allemagne]

Source :

RBID : ISTEX:71E59AC4154E5EE7007C11854F95A13B958BD21F

Abstract

The present experimental study deals with the laboratory modelling of two different mechanisms of gravitational percolation in partially melted rocks: (1) diapiric percolation of heavy material and (2) the sedimentation of heavy particles. These two mechanisms of mass transport in partially melted rocks result in different, scales of the segregation process in the melt-crystal matrix. A centrifuge furnace was used to simulate the percolation of the heavy particle layer through the partially molten granite at temperatures of up to 1000 °C. Samples of Beauvoir granite (Massif Central, France, grain size 0.16–0.5 mm with an initial degree of partial melting ≈45 per cent) were used as a matrix. A layer of Pt powder suspended in a melt of the same composition as the partially melted matrix was placed on the top of the granite sample. After centrifuging for various times (up to 2 × 104 s), X-ray images of samples were obtained and the evolution of the percolation process of heavy suspension in the partially molten granite was monitored from the Pt particle distribution. The diapiric or finger regime of percolation starts when the growth rate of a Raleigh-Taylor instability of the heavy layer is faster than the Stokes sedimentation velocity of individual particles in the upper layer. This relationship is a complex function of the size and initial concentration of heavy particles, as well as the ratio of particle to crystal size, the permeability of the matrix, and the heterogeneity scale in the partially melted matrix. At small concentrations (several per cent) and at large concentrations (where close packing of heavy particles results in an anomalous viscosity increase in the upper heavy layer) Stokes sedimentation is dominant in the vertical percolation of the heavy material. The sinking velocity of the diapir decreases when the size of heavy particles in it becomes comparable with the size of crystals in the partially melted granite. In this situation the vertical sinking of the diapir is not stable and the horizontal instability of the vertical mass transport starts to become important. Mass transport via diapiric percolation results in more efficient crystal-melt segregation of partially melted rocks. The percolation of individual particles provides only local melt-crystal flow on a scale comparable with the heavy particle size. The diapiric percolation provides a much larger scale of partial melt segregation with a length-scale comparable with the diapir size.

Url:
DOI: 10.1111/j.1365-246X.1996.tb04043.x


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Modelling of melt segregation processes by high-temperature centrifuging of partially molten granites—II. Rayleigh-Taylor instability and sedimentation</title>
<author>
<name sortKey="Bagdassarov, N S" sort="Bagdassarov, N S" uniqKey="Bagdassarov N" first="N. S." last="Bagdassarov">N. S. Bagdassarov</name>
</author>
<author>
<name sortKey="Dorfman, A M" sort="Dorfman, A M" uniqKey="Dorfman A" first="A. M." last="Dorfman">A. M. Dorfman</name>
</author>
<author>
<name sortKey="Dingwell, D B" sort="Dingwell, D B" uniqKey="Dingwell D" first="D. B." last="Dingwell">D. B. Dingwell</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:71E59AC4154E5EE7007C11854F95A13B958BD21F</idno>
<date when="1996" year="1996">1996</date>
<idno type="doi">10.1111/j.1365-246X.1996.tb04043.x</idno>
<idno type="url">https://api.istex.fr/document/71E59AC4154E5EE7007C11854F95A13B958BD21F/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000181</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000181</idno>
<idno type="wicri:Area/Istex/Curation">000181</idno>
<idno type="wicri:Area/Istex/Checkpoint">000232</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000232</idno>
<idno type="wicri:doubleKey">0956-540X:1996:Bagdassarov N:modelling:of:melt</idno>
<idno type="wicri:Area/Main/Merge">000303</idno>
<idno type="wicri:Area/Main/Curation">000296</idno>
<idno type="wicri:Area/Main/Exploration">000296</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Modelling of melt segregation processes by high-temperature centrifuging of partially molten granites—II. Rayleigh-Taylor instability and sedimentation</title>
<author>
<name sortKey="Bagdassarov, N S" sort="Bagdassarov, N S" uniqKey="Bagdassarov N" first="N. S." last="Bagdassarov">N. S. Bagdassarov</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Bayerisches Geoinstitut, Universität Bayreuth, 95440 Bayreuth</wicri:regionArea>
<wicri:noRegion>95440 Bayreuth</wicri:noRegion>
<wicri:noRegion>95440 Bayreuth</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dorfman, A M" sort="Dorfman, A M" uniqKey="Dorfman A" first="A. M." last="Dorfman">A. M. Dorfman</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Bayerisches Geoinstitut, Universität Bayreuth, 95440 Bayreuth</wicri:regionArea>
<wicri:noRegion>95440 Bayreuth</wicri:noRegion>
<wicri:noRegion>95440 Bayreuth</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dingwell, D B" sort="Dingwell, D B" uniqKey="Dingwell D" first="D. B." last="Dingwell">D. B. Dingwell</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Bayerisches Geoinstitut, Universität Bayreuth, 95440 Bayreuth</wicri:regionArea>
<wicri:noRegion>95440 Bayreuth</wicri:noRegion>
<wicri:noRegion>95440 Bayreuth</wicri:noRegion>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Geophysical Journal International</title>
<title level="j" type="abbrev">Geophys. J. Int.</title>
<idno type="ISSN">0956-540X</idno>
<idno type="eISSN">1365-246X</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="1996-12">1996-12</date>
<biblScope unit="volume">127</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="627">627</biblScope>
<biblScope unit="page" to="634">634</biblScope>
</imprint>
<idno type="ISSN">0956-540X</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0956-540X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">The present experimental study deals with the laboratory modelling of two different mechanisms of gravitational percolation in partially melted rocks: (1) diapiric percolation of heavy material and (2) the sedimentation of heavy particles. These two mechanisms of mass transport in partially melted rocks result in different, scales of the segregation process in the melt-crystal matrix. A centrifuge furnace was used to simulate the percolation of the heavy particle layer through the partially molten granite at temperatures of up to 1000 °C. Samples of Beauvoir granite (Massif Central, France, grain size 0.16–0.5 mm with an initial degree of partial melting ≈45 per cent) were used as a matrix. A layer of Pt powder suspended in a melt of the same composition as the partially melted matrix was placed on the top of the granite sample. After centrifuging for various times (up to 2 × 104 s), X-ray images of samples were obtained and the evolution of the percolation process of heavy suspension in the partially molten granite was monitored from the Pt particle distribution. The diapiric or finger regime of percolation starts when the growth rate of a Raleigh-Taylor instability of the heavy layer is faster than the Stokes sedimentation velocity of individual particles in the upper layer. This relationship is a complex function of the size and initial concentration of heavy particles, as well as the ratio of particle to crystal size, the permeability of the matrix, and the heterogeneity scale in the partially melted matrix. At small concentrations (several per cent) and at large concentrations (where close packing of heavy particles results in an anomalous viscosity increase in the upper heavy layer) Stokes sedimentation is dominant in the vertical percolation of the heavy material. The sinking velocity of the diapir decreases when the size of heavy particles in it becomes comparable with the size of crystals in the partially melted granite. In this situation the vertical sinking of the diapir is not stable and the horizontal instability of the vertical mass transport starts to become important. Mass transport via diapiric percolation results in more efficient crystal-melt segregation of partially melted rocks. The percolation of individual particles provides only local melt-crystal flow on a scale comparable with the heavy particle size. The diapiric percolation provides a much larger scale of partial melt segregation with a length-scale comparable with the diapir size.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
</list>
<tree>
<country name="Allemagne">
<noRegion>
<name sortKey="Bagdassarov, N S" sort="Bagdassarov, N S" uniqKey="Bagdassarov N" first="N. S." last="Bagdassarov">N. S. Bagdassarov</name>
</noRegion>
<name sortKey="Dingwell, D B" sort="Dingwell, D B" uniqKey="Dingwell D" first="D. B." last="Dingwell">D. B. Dingwell</name>
<name sortKey="Dorfman, A M" sort="Dorfman, A M" uniqKey="Dorfman A" first="A. M." last="Dorfman">A. M. Dorfman</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/NissirosV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000296 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000296 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    NissirosV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:71E59AC4154E5EE7007C11854F95A13B958BD21F
   |texte=   Modelling of melt segregation processes by high-temperature centrifuging of partially molten granites—II. Rayleigh-Taylor instability and sedimentation
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Jan 16 00:18:27 2018. Site generation: Mon Feb 1 22:09:13 2021